China OEM Flexible Steel Yox-200 Fluid Coupling Constant Fill and Variable Fill

Product Description

Product Description

Fluid Coupling Characteristics

Improve the starting capability of electric motor, protect motor against overloading, damp shock, load fluctuation and torsional vibration, and balance and load distribution in case of multi motor drives.

Types of Fluid Couplings

Several fluid coupling types are available on the market. They are used in the automobile industry, marine and railroad industry, oil and gas industry, water and waste treatment, construction, and industrial applications.

These couplings are used to transfer torque between 2 shafts. These couplings are based on the hydro-kinetic principles. They are made up of parts such as a runner, casing, impeller, and a seal. They are also referred to as “rotor” or “spindle.”

There are 2 types of fluid coupling: constant fill and variable fill. A constant fill fluid coupling has a fixed torque, and a variable fill fluid coupling has a variable torque.

The constant fill fluid coupling is user-friendly and offers maintenance-free operation. It can also be used to control slip. It is also available in variable speed versions. The constant fill type is used in a wide variety of applications. It is also used to control torque during acceleration.

There are several fluid coupling manufacturers, and you can choose the 1 that meets your needs. HZPT is 1 if the fluid coupling manufacturers in China. We have high-durability with low prices fluid couplings for sale. Contact us now if you are interested.

Product Parameters

Technical Data Sheet of Constant Filling Fluid Couplings YOX-Series

Item no. 600 (r/min) 750 (r/min) 1000 (r/min) 1500 (r/min) 3000 (r/min) Lquid(L) Weight(KG)
YOX-190       0.6-1.1 4.5-9.0 0.4-0.8 8.0
YOX-200       0.75-1.5 5.5-11 0.5-1.0 9.5
YOX-220     0.4-0.8 1.1-2.2 10-18.5 0.8-1.6 14
YOX-250     0.7-1.5 2.5-5.0 15-30 1.1-2.2 15
YOX-280     1.5-3.0 4.0-7.5 37-60 1.5-3.0 18
YOX-320   1.1-2.2 2.7-5.0 7.5-15 45-0 2.5-5.0 28
YOX-340   1.6-3.0 3.0-7.0 11-22 45-80 3.0-6.0 30
YOX-360   2.0-3.8 4.5-9.0 15-30 50-100 3.5-7.0 46
YOX-400   3.0-6.0 7.5-15 22-45 80-145 4.6-9.0 65
YOX-420   3.5-7 11-18.5 37-60   6.5-12 66
YOX-450   6.1-11 14-28 40-75   6.5-13 70
YOX-500   10-19 26-50 75-132   10-19 133
YOX-560   19-30 45-90 132-250   14-27 158
YOX-600 12-24 25-50 60-120 200-375   24-40 170
YOX-650 23-45 40-80 90-185 280-500   25-46 210
YOX-710 30-60 60-115 150-280     37-60 310
YOX-750 40-80 80-160 200-360     40-80 348
YOX-800 45-90 110-220 280-500     50-95 420
YOX-1000 140-280 270-550       70-140 510

 

Company Profile

 

Our Equipments

Main production equipment:
Large lathe, surface grinder, milling machine, gear shaper, spline milling machine, horizontal broaching machine, gear hobbing machine, shaper, slotting machine, bench drilling machine, radial drilling machine, boring machine, band sawing machine, horizontal lathe, end milling machine, crankshaft grinder, CNC milling machine, casting equipment, etc.
Inspection equipment:
Dynamic balance tester, high-speed intelligent carbon and sulfur analyzer, Blochon optical hardness tester, Leeb hardness tester, magnetic yoke flaw detector, special detection, modular fixture (self-made), etc.

Machining equipments
Heat equipment

 

Our Factory
Application – Photos from our partner customers

Company Profile
Our leading products are mechanical transmission basic parts – couplings, mainly including universal couplings, drum gear couplings, elastic couplings and other 3 categories of more than 30 series of varieties. It is widely used in metallurgical steel rolling, wind power, hydropower, mining, engineering machinery, petrochemical, lifting, paper making, rubber, rail transit, shipbuilding and marine engineering and other industries.
Our factory takes the basic parts of national standards as the benchmark, has more than 40 years of coupling production experience, takes “scientific management, pioneering and innovation, ensuring quality and customer satisfaction” as the quality policy, and aims to continuously provide users with satisfactory products and services. The production is guided by reasonable process, and the ISO9001:2015 quality management system standard is strictly implemented. We adhere to the principle of continuous improvement and innovation of coupling products. In recent years, it has successfully developed 10 national patent products such as SWF cross shaft universal coupling, among which the double cross shaft universal joint has won the national invention patent, SWF cross shaft universal coupling has won the new product award of China’s general mechanical parts coupling industry and the ZHangZhoug Province new product science and technology project.
Our factory has strong technical force, excellent process equipment, complete professional production equipment, perfect detection means, excellent after-sales service, various products and complete specifications. At the same time, we can provide the design and manufacturing of special non-standard products according to the needs of users. Our products sell well at home and abroad, and are trusted by the majority of users. We sincerely welcome friends from all walks of life at home and abroad to visit and negotiate for common development

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

fluid coupling

Handling Overloads and Stall Conditions in Fluid Couplings

A fluid coupling is designed to handle overloads and stall conditions in power transmission systems. When an overload or stall occurs, the fluid coupling utilizes its unique operating principle to protect the drivetrain and the connected machinery:

  • Slip Feature: One of the key characteristics of a fluid coupling is its ability to slip at high torque loads. When an overload situation arises, the fluid coupling allows some relative motion between the input and output sides, known as slip. This slip absorbs the excess torque and prevents it from being transferred to the driven equipment, effectively protecting it from damage.
  • Fluid Circulation: During normal operation, the fluid inside the coupling circulates smoothly between the impeller and turbine, transmitting torque with minimal losses. However, when an overload or stall condition occurs, the fluid circulation may become turbulent, generating heat in the process. This heat dissipation helps in absorbing and dissipating the excess energy, preventing the transmission system from experiencing sudden stress.
  • Automatic Reconnection: After an overload or stall condition, once the excess torque is dissipated through slip and heat, the fluid coupling automatically reconnects the input and output sides, resuming the power transmission. This automatic reconnection ensures that the system returns to normal operation once the overload situation is resolved.
  • Sturdy Construction: Fluid couplings are designed with robust and durable materials to withstand high torque and thermal stresses during overload conditions. The strong construction ensures that the fluid coupling remains reliable and operational even after multiple overload events.

Overall, a fluid coupling’s ability to handle overloads and stall conditions makes it a reliable and essential component in various industrial applications. By providing overload protection and slip characteristics, fluid couplings help prevent costly damage to equipment, increase operational safety, and contribute to the longevity of the entire power transmission system.

fluid coupling

Safety Features in Modern Fluid Coupling Designs

Modern fluid coupling designs incorporate various safety features to ensure the reliable and secure operation of the equipment. Here are some of the key safety features commonly found in modern fluid couplings:

1. Overload Protection: One of the primary safety features in modern fluid couplings is overload protection. In the event of an abrupt increase in load or torque, the fluid coupling slips, absorbing the excess torque and preventing damage to the connected equipment. This feature safeguards against mechanical failures and protects the machinery.

2. Torque Limiting: Fluid couplings are designed with torque limiting capabilities, which allow them to control the maximum torque transmitted to the driven equipment. By setting the torque limit within a safe operating range, the fluid coupling prevents excessive stresses on the system, ensuring longevity and reliability.

3. Automatic Overheat Protection: Some fluid couplings are equipped with automatic overheat protection mechanisms. If the fluid coupling’s operating temperature exceeds a predefined threshold, the protection system disengages the coupling temporarily until the temperature returns to a safe level. This prevents damage due to overheating and enhances safety.

4. Backstop or Holdback Device: In certain applications where reverse rotation is a concern, fluid couplings may include a backstop or holdback device. This feature prevents the driven equipment from rotating in the opposite direction, enhancing safety during sudden stops or reversals.

5. Fail-Safe Operation: Many modern fluid couplings are designed to operate in a fail-safe manner. In the event of any malfunction or failure, the coupling defaults to a safe mode, allowing the equipment to continue operating at reduced capacity or gradually shut down, avoiding catastrophic failures.

6. Seal Protection: Proper sealing is crucial for fluid couplings, especially in harsh environments. Modern designs often include advanced seal protection features to prevent oil leakage and contamination, ensuring environmental safety and reducing maintenance requirements.

7. Low Noise and Vibration: Reduced noise and vibration levels in fluid couplings contribute to operator safety and comfort. The damping properties of the fluid coupling help minimize vibrations, creating a quieter and more stable working environment.

8. Emergency Stop Capability: Some fluid couplings may have emergency stop provisions to quickly disengage the coupling in critical situations. This feature allows for rapid shutdowns in emergencies, preventing accidents and protecting personnel.

9. Condition Monitoring: Advanced fluid coupling designs may include condition monitoring capabilities. This allows operators to monitor the coupling’s performance, temperature, and other parameters in real-time, facilitating predictive maintenance and avoiding unexpected failures.

Overall, the incorporation of these safety features in modern fluid coupling designs ensures the protection of machinery, operators, and the surrounding environment. These safety measures enhance the reliability, efficiency, and longevity of equipment, making fluid couplings a safe and valuable choice for power transmission in various industrial applications.

fluid coupling

Maintenance Practices for Fluid Couplings

Regular maintenance is crucial to keep a fluid coupling in good condition and ensure its longevity. Here are the key maintenance practices:

  1. Fluid Level Checks: Regularly inspect the fluid level in the fluid coupling. Maintain the fluid level within the recommended range specified by the manufacturer.
  2. Fluid Quality: Monitor the quality of the fluid in the fluid coupling. Check for any signs of contamination, degradation, or discoloration. If the fluid shows signs of wear, replace it following the manufacturer’s guidelines.
  3. Fluid Replacement: As part of routine maintenance, consider replacing the fluid periodically, even if there are no visible signs of wear. Fluid replacement intervals may vary based on the application and operating conditions.
  4. Lubrication: Ensure proper lubrication of the fluid coupling components, including bearings and seals, as specified by the manufacturer.
  5. Inspections: Regularly inspect the fluid coupling for any signs of leaks, damage, or unusual noises during operation. Address any issues promptly to prevent further damage.
  6. Alignment: Verify that the fluid coupling is correctly aligned with the connected equipment. Misalignment can lead to premature wear and reduced performance.
  7. Coupling Bolts: Check and tighten the coupling bolts as needed to maintain proper coupling integrity.
  8. Temperature Monitoring: Monitor the operating temperature of the fluid coupling. Elevated temperatures may indicate an issue that needs attention.
  9. Vibration Analysis: Periodically perform vibration analysis to detect any abnormal vibrations that could indicate potential problems.
  10. Manufacturer Guidelines: Follow the maintenance guidelines and recommendations provided by the fluid coupling manufacturer.

By adhering to these maintenance practices, you can extend the life of your fluid coupling, improve its reliability, and minimize the risk of unexpected failures.

China OEM Flexible Steel Yox-200 Fluid Coupling Constant Fill and Variable Fill  China OEM Flexible Steel Yox-200 Fluid Coupling Constant Fill and Variable Fill
editor by CX 2024-01-10